96 research outputs found

    Exploring the feasibility of introducing triple artemisinin-based combination therapy in the malaria treatment policy in Vietnam

    Get PDF
    BACKGROUND: This study investigates the processes regarding changing malaria treatment policies in Vietnam. Moreover, it explores the feasibility of introducing triple artemisinin-based combination therapy (TACT) in Vietnam to support the national malaria control and elimination plan. METHODS: Data were collected via 12 in-depth interviews with key stakeholders, combined with a review of policy documents. RESULTS: TACT is considered as a useful backup strategy in case future treatment failures with current artemisinin-based combination therapy (ACT) would occur. Moreover, TACT is also considered as a promising strategy to prevent the re-establishment of malaria. However, regulatory procedures and implementation timelines for TACT were expected to be lengthy. Therefore, strategies to engage national decision-makers, regulators, and suppliers should be initiated soon, stipulating the benefits of TACT deployment. In Vietnam, a procedure to apply for an import permit without registration that has previously been applied to the introduction of artesunate-pyronaridine was proposed to accelerate the introduction of TACT. Global-level support through the World Health Organization recommendations and prequalification were considered critical for supporting the introduction of TACT in Vietnam. CONCLUSIONS: Appropriate approach strategies and early stakeholder engagement will be needed to accelerate the introduction of TACT in Vietnam

    Analysis of Plasmodium vivax schizont transcriptomes from field isolates reveals heterogeneity of expression of genes involved in host-parasite interactions

    Get PDF
    Funder: Division of Intramural Research, National Institute of Allergy and Infectious Diseases; doi: http://dx.doi.org/10.13039/100006492Abstract: Plasmodium vivax gene regulation remains difficult to study due to the lack of a robust in vitro culture method, low parasite densities in peripheral circulation and asynchronous parasite development. We adapted an RNA-seq protocol “DAFT-seq” to sequence the transcriptome of four P. vivax field isolates that were cultured for a short period ex vivo before using a density gradient for schizont enrichment. Transcription was detected from 78% of the PvP01 reference genome, despite being schizont-enriched samples. This extensive data was used to define thousands of 5′ and 3′ untranslated regions, some of which overlapped with neighbouring transcripts, and to improve the gene models of 352 genes, including identifying 20 novel gene transcripts. This dataset has also significantly increased the known amount of heterogeneity between P. vivax schizont transcriptomes from individual patients. The majority of genes found to be differentially expressed between the isolates lack Plasmodium falciparum homologs and are predicted to be involved in host-parasite interactions, with an enrichment in reticulocyte binding proteins, merozoite surface proteins and exported proteins with unknown function. An improved understanding of the diversity within P. vivax transcriptomes will be essential for the prioritisation of novel vaccine targets

    Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ideal malaria parasite populations for initial mapping of genomic regions contributing to phenotypes such as drug resistance and virulence, through genome-wide association studies, are those with high genetic diversity, allowing for numerous informative markers, and rare meiotic recombination, allowing for strong linkage disequilibrium (LD) between markers and phenotype-determining loci. However, levels of genetic diversity and LD in field populations of the major human malaria parasite <it>P. vivax </it>remain little characterized.</p> <p>Results</p> <p>We examined single-nucleotide polymorphisms (SNPs) and LD patterns across a 100-kb chromosome segment of <it>P. vivax </it>in 238 field isolates from areas of low to moderate malaria endemicity in South America and Asia, where LD tends to be more extensive than in holoendemic populations, and in two monkey-adapted strains (Salvador-I, from El Salvador, and Belem, from Brazil). We found varying levels of SNP diversity and LD across populations, with the highest diversity and strongest LD in the area of lowest malaria transmission. We found several clusters of contiguous markers with rare meiotic recombination and characterized a relatively conserved haplotype structure among populations, suggesting the existence of recombination hotspots in the genome region analyzed. Both silent and nonsynonymous SNPs revealed substantial between-population differentiation, which accounted for ~40% of the overall genetic diversity observed. Although parasites clustered according to their continental origin, we found evidence for substructure within the Brazilian population of <it>P. vivax</it>. We also explored between-population differentiation patterns revealed by loci putatively affected by natural selection and found marked geographic variation in frequencies of nucleotide substitutions at the <it>pvmdr-1 </it>locus, putatively associated with drug resistance.</p> <p>Conclusion</p> <p>These findings support the feasibility of genome-wide association studies in carefully selected populations of <it>P. vivax</it>, using relatively low densities of markers, but underscore the risk of false positives caused by population structure at both local and regional levels.</p> <p>See commentary: <url>http://www.biomedcentral.com/1741-7007/8/90</url></p

    Strategies for deploying triple artemisinin-based combination therapy in the Greater Mekong Subregion

    Get PDF
    Background This is a qualitative study to identify implementation challenges for deploying triple artemisinin-based combination therapy (TACT) in the Greater Mekong Subregion (GMS) of Southeast Asia and to explore strategies to overcome these challenges. Methods In-depth interviews were conducted in three countries that have repeatedly been confronted with ACT failures: Cambodia, Vietnam, and Lao PDR. Thirty-nine key stakeholders in the healthcare systems in these countries were interviewed. One participatory workshop was conducted in Cambodia, where scenarios for potential TACT deployment were discussed. Results The results section is organized around four strategic themes that emerged from the data: policy support, data and evidence, logistics and operation, and downstream engagement. The study revealed that countries in the GMS currently rely on ACT to eliminate Plasmodium falciparum malaria by 2025. TACT is, however, considered to be a useful backup strategy in case of future treatment failures and to prevent the re-establishment of malaria. The study showed that a major challenge ahead is to engage decision makers and healthcare providers into deploying TACT, given the low case incidence of falciparum malaria in the GMS. Interview respondents were also skeptical whether healthcare providers would be willing to engage in new therapies for a disease they hardly encounter anymore. Hence, elaborate information dissemination strategies were considered appropriate and these strategies should especially target village malaria workers. Respondents proposed several regulatory and programmatic strategies to anticipate the formation of TACT markets in the GMS. These strategies include early dossier submission to streamline regulatory procedures, early stakeholder engagement strategies to shorten implementation timelines, and inclusion of TACT as second-line therapy to accelerate their introduction in case they are urgently needed. Conclusions This paper presents a qualitative study to identify implementation challenges for deploying TACT in the GMS and to explore strategies to overcome these challenges. The findings could benefit researchers and decision makers in strategizing towards potential future deployment of TACT in the GMS to combat artemisinin and partner drug resistance

    The impact of anti-malarial markets on artemisinin resistance: perspectives from Burkina Faso

    Get PDF
    Background: Widespread artemisinin resistance in Africa could be catastrophic when drawing parallels with the failure of chloroquine in the 1970s and 1980s. This article explores the role of anti-malarial market characteristics in the emergence and spread of arteminisin resistance in African countries, drawing on perspectives from Burkina Faso. Methods: Data were collected through in-depth interviews and focus group discussions. A representative sample of national policy makers, regulators, public and private sector wholesalers, retailers, clinicians, nurses, and community members were purposively sampled. Additional information was also sought via review of policy publications and grey literature on anti-malarial policies and deployment practices in Burkina Faso. Results: Thirty seven in-depth interviews and 6 focus group discussions were conducted. The study reveals that the current operational mode of anti-malarial drug markets in Burkina Faso promotes arteminisin resistance emergence and spread. The factors are mainly related to the artemisinin-based combination therapy (ACT) supply chain, to ACT quality, ACT prescription monitoring and to ACT access and misuse by patients. Conclusion: Study findings highlight the urgent requirement to reform current characteristics of the anti-malarial drug market in order to delay the emergence and spread of artemisinin resistance in Burkina Faso. Four recommendations for public policy emerged during data analysis: (1) Address the suboptimal prescription of anti-malarial drugs, (2) Apply laws that prohibit the sale of anti-malarials without prescription, (3) Restrict the availability of street drugs, (4) Sensitize the population on the value of compliance regarding correct acquisition and intake of anti-malarials. Funding systems for anti-malarial drugs in terms of availability and accessibility must also be stabilized

    Artemisinin-resistant K13 mutations rewire Plasmodium falciparum's intra-erythrocytic metabolic program to enhance survival

    Get PDF
    The emergence and spread of artemisinin resistance, driven by mutations in Plasmodium falciparum K13, has compromised antimalarial efficacy and threatens the global malaria elimination campaign. By applying systems-based quantitative transcriptomics, proteomics, and metabolomics to a panel of isogenic K13 mutant or wild-type P. falciparum lines, we provide evidence that K13 mutations alter multiple aspects of the parasite's intra-erythrocytic developmental program. These changes impact cell-cycle periodicity, the unfolded protein response, protein degradation, vesicular trafficking, and mitochondrial metabolism. K13-mediated artemisinin resistance in the Cambodian Cam3.II line was reversed by atovaquone, a mitochondrial electron transport chain inhibitor. These results suggest that mitochondrial processes including damage sensing and anti-oxidant properties might augment the ability of mutant K13 to protect P. falciparum against artemisinin action by helping these parasites undergo temporary quiescence and accelerated growth recovery post drug elimination

    Plasmepsin II–III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum

    Get PDF
    Multidrug resistant Plasmodium falciparum in Southeast Asia endangers regional malaria elimination and threatens to spread to other malaria endemic areas. Understanding mechanisms of piperaquine (PPQ) resistance is crucial for tracking its emergence and spread, and to develop effective strategies for overcoming it. Here we analyze a mechanism of PPQ resistance in Cambodian parasites. Isolates exhibit a bimodal dose–response curve when exposed to PPQ, with the area under the curve quantifying their survival in vitro. Increased copy number for plasmepsin II and plasmepsin III appears to explain enhanced survival when exposed to PPQ in most, but not all cases. A panel of isogenic subclones reinforces the importance of plasmepsin II–III copy number to enhanced PPQ survival. We conjecture that factors producing increased parasite survival under PPQ exposure in vitro may drive clinical PPQ failures in the field
    corecore